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INTRODUCTION 

There is strong evidence from various studies on the 

importance of the dose of the inoculum of a pathogen that 

can lead to severe infection. Such pathogens include those 

causing influenza and the measles as well as human 

immunodeficiency virus (HIV), tuberculosis (TB), 

Streptococcus pneumonia, HBV, flavivirus West Nile 

virus and coronaviruses.1-11  

The proposed mechanism by which a high viral inoculum 

leads to more severe disease is via a dysregulated and 

overwhelmed innate immune response to a higher viral 

dose, where immunopathology plays a role in viral 

pathogenesis.12 This may be the case for COVID-19.13  

It has been suggested that a minimal viral inoculum may 

be controlled subclinically by innate defense mechanisms, 

while massive doses can overwhelm the innate immunity 

and may cause severe disease and rapid death.12 

Unfortunately, this issue has not undergone any challenge 

trials. Furthermore, epidemiological studies to correlate 

the association between the clustering of cases with both 

the mortality rate (MR) and the CFR are lacking.  

Several research groups have developed epidemiological 

models of COVID-19. These models use confirmed cases 

and deaths, testing rates and a range of assumptions and 

epidemiological knowledge to estimate the number of 

true infections and other important metrics.14  
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CFR has gained great importance in the COVID-19 

pandemic because the expected total mortality burden of 

COVID-19 is directly related to the CFR. According to 

WHO, countries are making their final CFR estimates as 

active cases are resolved. Unfortunately, current CFR 

calculations during ongoing epidemics have been 

criticized due to the wide variation in CFR estimates over 

the course of an epidemic, making them difficult to 

compare for several reasons. These models might not 

accurately track the pandemic as they apply previously 

determined infection fatality ratios (IFRs) from local 

sources or abroad. This makes currently used models 

using predetermined CFR subject to great bias. According 

to the WHO, there has been broad variation in naïve 

estimations of CFR that may make them misleading.15-17 

The testing capacity may be limited and restricted to 

people with severe cases of disease and priority risk 

groups.17 This makes continuous massive COVID-19 

testing for continuous estimation of IFR or CRF a 

difficult task. 

In the context of current variance and difficulties in CFR 

estimates and to shed light onto the unknown parameters 

associated with COVID-19 mortality, which are poorly 

understood, we investigated whether the CFR is 

associated with a change in MR expressed as the number 

of mortalities/million (M) inhabitant’s population. 

Moreover, this study also looked for an association and 

behavior of the MR expressed as deaths/M and the 

number of cases/M population, which (in high number 

settings) represents a high density of infection. 

METHODS 

Study design 

This study was conducted to look for any relationship 

between the MR presented as deaths/million members of 

the population with both the total number of cases/M 

population (density of infection) and the CFR. We chose 

31 countries with testing coverage of >400,0000 tests/M 

inhabitants and a population size of >1 million. 

Confirmed case counts adjustment were based on the 

percentage of COVID-19 tests that come back positive. 

We used ANOVA regression analyses to test the 

associations measured throughout the study (SPSS-21). 

Data were collected from the following public reference 

websites:  

1. COVID-19/coronavirus real time updates with 

credible sources in US and Canada.  

2. COVID-19 Dashboard by the Center for Systems 

Science and Engineering (CSSE) at Johns Hopkins 

University (JHU).  

3. WHO coronavirus disease (COVID-19) dashboard. 

(https://covid19.who.int/?gclid=CjwKCAiA1eKBBh

BZEiwAX3gql_TD3cUixzIROXwHFdS3yNhCxcF

79FAYNtFC8mgHVXewA13pOFhEQxoCV1IQAv

D_BwE). 

4. COVID-19 dashboard by the center for systems 

science and engineering (CSSE) at Johns Hopkins 

University (JHU).  

5. Worldometer. COVID-19 virus pandemic. 

(worldometers.info).  

6. Wikipedia. COVID-19 pandemic by country and 

territory. 

Information was collected on the number of COVID-19 

cases/M inhabitants and the number of COVID-19 

deaths/M inhabitants as of 16 January 2021. Additional 

country-specific references are included within the 

supplementary appendices.  

The CFR was calculated by dividing the number of 

COVID-19 deaths up of 16 January 2021, by the number 

of confirmed cases up to that time and this was expressed 

as a percentage. The MR was calculated by dividing the 

number of COVID-19 deaths per 1 M inhabitants. 

Table 1: Predicated equations for choosing an optimum highly fitted model. 

Models Predicated equations 

Linear Model whose equation is Y=b0+(b1*t).  

Logarithmic Model whose equation is Y=b0+(b1*Ln (t)). 

Inverse Model whose equation is Y=b0+(b1/t). 

Quadratic Model whose equation is Y=b0+(b1*t)+(b2*t**2).  

Cubic Model defined by the equation Y=b0+(b1*t)+(b2*t**2)+(b3*t**3). 

Compound Model whose equation is Y=b0*(t**b1) or Ln (Y)=Ln (b0)+(b1*Ln(t)). 

S-shape Model whose equation is Y=e**(b0+(b1/t)) or Ln (Y)=b0+(b1/t). 

Power ± Model whose equation is Y=b0*(b1**t) or Ln (Y)=Ln (b0)+(Ln (b1)*t). 

Growth Model whose equation is Y=1/(1/u+(b0*(b1**t))) or Ln (1/y-1/u)=Ln (b0)+(Ln (b1)*t). 

Exponential Model whose equation is Y=e**(b0+(b1*t)) or Ln (Y)=b0+(b1*t). 

Logistic Model whose equation is Y=b0*(e**(b1*t)) or Ln (Y)= Ln (b0)+(b1*t). 

±Shaded predicated equations represents an optimal model. 
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Statistical methods 

An optimum highly fitted model was checked among the 

several assumed non-linear regression models that can be 

transformed to linear equations such as (logarithmic, 

inverse, quadratic, cubic, compound, power, S-shape, 

growth, exponential and logistic). A simple linear 

regression model was proposed. Predicted equations have 

been suggested for studying the impact of total cases per 

1 M tested on COVID-19 death/1M population 

inhabitants concerning estimates and impact of total 

COVID-19 death/1M population inhabitant on COVID-

19 case fatality rate (Table 1-3). All statistical methods 

were performed using the readymade statistical package 

SPSS, version 21. 

RESULTS 

Table 2 shows a meaningful nonlinear regression (power 

model) tested in a two tailed alternative statistical 

hypothesis. The slope value indicated that with an 

increasing one unit of the total COVID-19 cases per 1 M 

tested persons, there is a positive impact on the unit of 

total COVID-19 deaths/1 million population inhabitant 

and estimated as (1.010683), which was recorded as a 

very highly significant at p<0.000 as well as the 

relationship coefficient which was accounted as (0.748) 

with a meaningful and significant determination 

coefficient (R square=55.95%). Another source of 

variations that was not included in the model (intercept) 

was not significant at p>0.05. This indicates that the 

assignable factor (total COVID-19 cases per 1 M tested 

persons) was explaining all variations among the studied 

function's factor (the total deaths/1M population 

inhabitants). 

Figure 1 shows the long term trend of scatter diagram 

impact of total COVID-19 cases per 1 M tested 

population inhabitants on total COVID-19 deaths/M 

population inhabitants. 

Table 3 shows a meaningful nonlinear regression (power 

model) tested in a two tailed alternative statistical 

hypothesis. The slope value indicated that with an 

increasing one unit of the total COVID-19 deaths/1M 

inhabitants, there was a positive impact on the unit of 

CFR and was estimated as (0.446412) and recorded a 

very high significant impact at p<0.000. The relationship 

coefficient was accounted as (0.67256) with a meaningful 

and significant determination coefficient (R 

square=45.234%). Another source of variations that was 

not included in the studied model, intercept showed no 

significant p>0.05. This indicates that the assignable 

factor (total COVID-19 deaths/1M inhabitants) explained 

all the variations among the studied function's factor (the 

CFR). 

Figure 2 shows the long term trend of scatter diagram 

impact of total COVID-19 deaths/1M inhabitants on 

CFR. 
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Figure 1: Long term trend of the scatter diagram concerning impact of total Covid-19 cases per 1 M tested 

inhabitants on total Covid-19 deaths/1 M inhabitants. 
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Figure 2: Long term trend of the scatter diagram concerning impact of total COVID-19 deaths/1 M inhabitants on 

CFR. 

Table 2: Impact of total cases to 1 M, tested on total COVID-19 deaths/1 M. 

Dependent variable: total deaths/1 million. 

List wise deletion of missing data 

Correlation coefficient 0.74800 (VHS) Meaningful nonlinear regression tested in a two tailed alternative 

statistical hypothesis R square 0.5595 

F statistic of reg. ANOVA 36.83451 Sign. F= 0.0000 (VHS) (*) 

Variables in the equation 

Variable B SE.B Beta t test Sig. level  

Total cases  per 1 M  tested 1.010683 0.166528 0.747998 6.069 0.0000 (VHS) (*) 

(Constant) 0.010813 0.018544 - 0.583 0.5643(NS) (**) 

Predicted equation-power shape model 

(𝐓𝐨𝐭𝐚𝐥 𝐝𝐞𝐚𝐭𝐡𝐬/𝟏 𝐌)̂ = (𝟎. 𝟎𝟏𝟎𝟖𝟏𝟑) × (𝐭𝐨𝐭𝐚𝐥 𝐜𝐚𝐬𝐞𝐬/𝟏 𝐌 𝐭𝐞𝐬𝐭𝐞𝐝)𝟏.𝟎𝟏𝟎𝟔𝟖𝟑  
(*)VHS=very highly significant at p<0.000; testing non-linear regression (power model)=model whose equation is Y=b0* 

(xb1) or ln (Y)=ln (b0)+[b1*ln (x)]; (**)NS: p>0.05. 

Table 3: Non- linear (power mode) regression for total COVID-19 deaths/1 M inhabitants on CFR. 

Dependent variable method: power-shape model case fatality rate. 

List wise deletion of missing data 

Correlation coefficient 0.67256 (VHS) Meaningful nonlinear regression tested in a two tailed alternative 

statistical hypothesis R square 0.37746 

F statistic of reg. ANOVA 23.9527 Sign. F= 0.0000 (VHS) (***) 

Variables in the equation 

Variable B SE.B Beta t test Sig. level (*) 

Total deaths/1 M 0.446412 0.091213 0.67256 4.894 0.0000 

(Constant) 0.089347 0.048811 - 1.830 0.0775 

Predicted equation-logarithm-shape model 

(𝐂𝐚𝐬𝐞 𝐟𝐚𝐭𝐚𝐥𝐢𝐭𝐲 𝐫𝐚𝐭𝐞)̂ = (𝟎. 𝟎𝟗𝟑𝟐) × (𝐭𝐨𝐭𝐚𝐥 𝐝𝐞𝐚𝐭𝐡𝐬/𝟏 𝐌 )𝟎.𝟒𝟒𝟔𝟒𝟏𝟐  

(***)VHS=very highly significant at p<0.000; testing non-linear regression (power model): model whose equation is 

Y=b0*(xb1) or ln (Y)=ln (b0)+[b1*ln(x)] . 
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DISCUSSION 

In this study, we found that an increase in number of 

COVID-19 cases per million inhabitants leads to increase 

in COVID-19 deaths/M in very high significant 

association (Table 2) (Figure 1). We proved that when 

MR increases there is a concurrent increase in CFR in a 

very highly significant association too. According to 

these findings  we suggest that a change in number of 

cases/M can modify current estimates of the CFR. By 

building models that are suitable for IFR we can predict 

the number of PREDICTED mortalities according to total 

COVID-19 cases/M. We think that the suggested total 

number of cases as a factor determines MR and the 

suggested MR in determining CFR are novel findings in 

pandemics’ behavior.  Previous works that tried to find 

COVID-19 CFR did not take in consideration the number 

of cases among a specified community. For example, the 

diamond princess cruise ship previous mortality 

estimates.18-20 Possibly reflects behavior and CFR of 

COVID-19 concerning one condition, that is the total 

number of COVID-19 cases. So we think isolated 

estimates do reflect a specific behavior of COVID-19 

pandemic concerning the specific number of cases studied 

in that community and not reflects the general behavior of 

pandemic, unless the number of cases is considered. 

The results prove that the positive influence of the 

COVID-19 MR on the CFR was very high by non-linear 

regression test (Table 3) (Figure 2).  

The most important confounder is the testing coverage 

and that the reported case counts were not adjusted to 

different levels of testing coverage and changing ratios of 

test positivity within time and place. Comparisons based 

on confirmed case counts can be misleading since a low 

case count may reflect either a low disease prevalence or 

a low rate of disease detection. Other confounding factors 

are unavoidable lags associated with most ways of 

measuring disease prevalence and high prevalence of 

asymptomatic cases, which were estimated to be 15-70% 

of the total number of true infections elsewhere.21  

On the other hand, estimates of the CFR and IFR made in 

real time can be biased upwards by the under reporting of 

cases and downwards by failure to account for the delay 

from confirmation-to-death, misattribution of deaths to 

other causes and to limited access to testing.  

Factors such as mobility, social distancing policies, 

population density and host factors can interfere greatly 

with the number of cases. The scope of this study was not 

designed to look for causes concerning variance in the 

number of cases at different times and in different places. 

Instead, we tested how the total number of cases affects 

the MR and how MR affects CFR. The number of cases, 

as a factor, determines the MR is well known, but the role 

of the number of cases in initiating cascade leading to 

increase CFR is a novel finding. The underlying 

hypothesis might be explained by the viral load and 

density of infection that are associated with increase in 

density and clusters of cases. Although this has been 

studied under certain conditions previously, the 

contribution of the number of cases in disease 

pathogeneses should be examined in depth again. During 

this pandemic, many studies have tried to determine why 

CFR widely differs rather than looking at why the number 

of cases/M inhabitants differs. It was suggested, for 

example, that overdrive of innate immunity possibly 

initiated when the viral load is high. This could manifests 

clinically as severe COVID-19 disease or multisystem 

inflammatory syndrome (MIS-C), a Kawasaki disease 

(KD) like syndrome that occur mainly in children.22-26 

Family and community clusters of severe COVID-19 

infection have been reported early in this pandemic.27-28  

Reported excess deaths estimates were thought to 

represent misclassified COVID-19 deaths or potentially 

those indirectly related to the COVID-19 pandemic. It 

was suggested that this excess number was related to the 

pandemic itself and not to disease, it was attributed to 

lack of facilities during the pandemic.29 According to our 

estimates, this excess could represent a portion of the 

total deaths attributed to increase deaths/M inhabitants 

associated with increase in number of cases specially 

during sharp waves of pandemic. 

Previously, it has not been easy to explain the 

extraordinarily high mortality rates during certain 

epidemics and this has been a concern for scientists. For 

example, there have been high mortality rates during 

measles epidemics in the Pacific Islands such as in Fiji in 

1875 and Rotuma in 1911 with mortality rates of 20% 

and 13% of the total residents, respectively. The mortality 

rate in the Faroe Islands in 1846 was nearly 10 times 

higher than that during the 1911 epidemic in Rotuma.30 

One of the amazing things in these epidemics is that there 

was no direct evidence of hypervirulent strains of the 

measles virus or genetic predispositions to fatal outcomes 

after measles infection.31  

This makes us consider the role of high number of cases 

in initiation of high MR which leads to high CFR. 

Again, in the 1918 influenza epidemic, virulence was 

notable when the number of deaths exceeded 20 million 

worldwide, with approximately half a million of these 

occurring in the United States. Noteworthy evidence from 

the 1918 epidemic was that one-quarter of the American 

population had clinically recognizable cases of flu during 

the epidemic, giving the impression of a high attack rate. 

Before the 1918 epidemic, one has to go back to the black 

death (bubonic plague) of 1346 to find a similarly 

devastating epidemic.32-33 

During the COVID-19 pandemic, clinicians have 

struggled to understand why some infected patients 

experience only mild symptoms while others exhibit 

progressive, fatal disease.27 I think this new evidence 
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enable us to understand a great part of this amazing 

situation.  

CONCLUSION  

This is for the first time MR is addressed to predict CFR. 

Furthermore, it is a first time the attack rate (cases/M) is 

addressed in pathogeneses of sever COVID-19 expressed 

as high MR leads to a high CFR. 

These findings might explain previous pandemics and as 

well to current pandemic or future ones. 

An increase in the number of deaths/M inhabitants 

coincides with increases in the number of cases/M 

inhabitants and the CFR. This means that when such 

situation happens a proportional increase in the total 

number of deaths outnumbers the proportional increase in 

total infections, which leads to an increased CFR from its 

baseline level. The proxy indicator for the MR and CFT is 

an increase in the total number of cases.  

When CFR starts to increase during epidemic, this means 

an accelerated sever phase is taking place.  

These findings will help in the development of infection 

control policies to break the chain of the pandemic and 

help to understand the philosophy of the pandemic. 

Health systems should focus on decreasing the number of 

total cases, since MR increased with an increase in the 

total number of cases and CFR can increase when MR is 

high enough to cause proportionally higher mortalities in 

relation to affected cases.  

We suggest that all health systems can have the high MR 

and  CFR, if the number of cases/M increases.  

Better understanding of the pandemic behavior through 

showing that an increased CFR with an increased number 

of cases supports the viral overload theory. 
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